Líder mundial en español - Elergonomista.com - Aņo 8
Publicidad en Elergonomista.com
Botánica
Cormofitos
Parénquima, colénquima, esclerénquima
Xilema
Floema
Epidermis
Tejidos Glandulares
La raiz
El tallo
La hoja
La flor
  

Biología para bachiller y selectividad

BIOLOGÍA PARA LA SELECTIVIDAD Y BACHILLERATO

 

 

 

General
Páginas más visitadas
Elergonomista
Objetivos
Contenido
Historia de la biología
El origen de la vida
Diversidad de los seres vivos
Mecanismos de la evolución
Conducta
Ecología
Genética
Histología animal
Tejido hemático  
Citoplasma
Genética molecular
Métodos de estudio de las células y los tejidos. Entrar

Cadena respiratoria. Entrar

Mitocondrias. Entrar
ATP. Entrar
Plastos. Entrar
Analisis del agua. Entrar
Herencia ligada al sexo. Entrar
Mutaciones. Entrar
Determinación del sexo. Entrar
Mecanismos Genéticos básicos de la célula
Transporte de proteínas

Estás en: Inicio > Biofisica > Salida y entrada de los compartimentos celulares

Los compartimientos corporales no son compartimientos cerrados y, hay un permanente movimiento de
agua y solutos entre ellos y entre el compartimiento corporal y el exterior. Debe notarse que toda sustancia que INGRESA al compartimiento corporal, ya sea por vía digestiva o respiratoria, debe atravesar, forzosamente, para llegar al intersticial y a las células, el compartimiento intravascular. Del mismo modo, toda sustancia que EGRESA del compartimiento corporal, ya sea por vía digestiva, respiratoria, urinaria o a través de Ia piel, también debe atravesar el compartimiento intravascular para alcanzar el exterior.

Es importante recordar que, aunque el compartimiento intravascular, y en especial el agua plasmática, es la VIA OBLlGADA para el paso de todas las sustancias que entran y salen del organismo, éste es sólo una pequeña parte de todo el compartimiento corporal.
Es habitual extraer, en un paciente, una muestra de sangre por punción de una vena del pliegue del codo, analizar la CONCENTRACION de una determinada sustancia disuelta en el agua plasmática y procurar estimar la situación de esa sustancia en todo el compartimiento corporal. Más aún, es frecuente, a partir de esa muestra, inferir conclusiones sobre el estado de salud o enfermedad del individuo. Esto sólo será posible, hasta cierto punto, si se conoce cómo esa sustancia se DISTRIBUYE entre los distintos compartimientos.

Distribución de sustancias entre los compartimientos: Para entender más claramente qué significa esto de la distribución entre los compartimientos, pongamos cuatro ejemplos muy claros.
a) La distribución de los glóbulos rojos.
b) La distribución de la urea.
c) La distribución del ion Na+.
d) La distribución del agua.
Los GLOBULOS ROJOS están presentes en el compartimiento intravascular en una concentración que, de acuerdo al individuo y a circunstancias, está entre 4 y 5 millones /mm3 (1 mm3 = 1 μL). No hay glóbulos ni en el intersticial ni en el intracelular, simplemente porque, en condiciones normales, los glóbulos rojos no pueden atravesar el epitelio capilar.
La UREA está presente en el intravascular, el intersticial y el intracelular en, aproximadamente, la misma concentración (0,3 g/ L).
Sin hacer en ninguna otra consideración, podemos decir que la urea se distribuye homogéneamente y que ni el endotelio capilar ni la membrana celular significan barreras efectivas para su movimiento.
Así es que la urea "marcada" (14C-urea) puede ser usada como indicador para medir el agua corporal total de un individuo.
El SODIO está presente en el agua plasmática y en el agua intersticial en concentraciones muy similares (~140 mEq/L), y aunque la concentración en el intersticial es algo menor (ver p. 32), se suele considerar que la distribución es homogénea entre estos dos compartimientos. Lo llamativo es que en el intracelular la concentración de Na+ es de tan sólo 12 mEq/L. Sin entrar a juzgar el mecanismo por el cual esta concentración intracelular se mantiene baja, queda claro que la membrana celular debe estar actuando sobre el Na+ , impidiendo que sus concentraciones intra y extracelulares se igualen.
Al mismo tiempo, es obvio que el endotelio capilar no es una barrera efectiva para este ion.
El AGUA, por su parte, es, de todas las sustancias del organismo, la que más fácilmente atraviesa los límites de Ios compartimientos. De ahí que no sea posible encontrar, más que por brevísimos intervalos, diferencias de concentración de agua entre uno y otro compartimiento.

INDICADORES QUE SE ESCAPAN DE LOS COMPARTIMIENTOS
La idea de inyectar una MASA de un indicador y al tiempo medir la CONCENTRACION requiere que, en el lapso que media entre el momento de la inyección y la extracción de la muestra, no se haya perdido indicador. Esta pérdida ocurre sobre todo con los marcadores extravasculares, como la inulina y el agua tritiada: cuando se los inyecta se distribuyen rápidamente en la sangre y luego pasan al extracelular y a toda el agua corporal. Mientras esto sucede, parte del indicador es eliminado por la orina hacia el exterior. De ese modo, cuando se calcula el volumen de distribución de acuerdo a la fórmula V = M / C se comete un error si se toma a M como la masa inyectada. Debería usarse la mesa real presente en el compartimiento al tiempo de la extracción y ésta no es más que (masa inyectada - masa perdida). Hacer esto requeriría medir la masa del indicador en la orina, por ejemplo, y esto no es fácil de hacer, en especial porque el volumen de orina que se puede conseguir, en un tiempo corto, es generalmente pequeño y con mucho error. Por eso se prefiere CALCULAR cuál hubiera sido la concentración si no se hubiera perdido nada.

¿Cómo se logra esto? Simplemente se toman VA- RIAS muestras de sangre a distintos tiempos después de la inyección del indicador y se analiza, en cada una de ellas, la concentración. Se gráfica la concentración en función del tiempo y se obtiene Lo siguiente:

1

El gráfico de la izquierda es la representación de la concentración en una escala uniforme y el de la derecha en una escala logarítmica. Como la función es EXPONENCIAL, se obtiene una recta y se puede extrapolar hasta que corte el eje y (línea punteada). La intersección corresponde a la concentración que habría en el compartimiento a tiempo cero: un tiempo en el que no puede haberse perdido NADA. Usando ahora la masa inyectada y la concentración a tiempo cero, se puede calcular el espacio de distribución del indicador y, lógicamente, el volumen del compartimiento.

Contenido
» Nucleo

» Acidos nucleicos

» Prácticas biologia

» Reproducción

» Reproducción sexual

» Desarrollo embrionario
» Mutaciones

» Especialización celular

» Hormonas

» Material de laboratorio

» Problemas. Ejercicios de biología

» Problemas de genética

» Agua y sales minerales

» Niveles de organización de los seres vivos

 

 
2009 Comunidades de divulgación científico técnica. Elergonomista.com - Administración de empresas - Alimentación - Biofísica - Biología - Botánica - Biology - Cardiología - Denominación de origen - Ecología - Derecho romano - Enfermería - Farmacología - Fisiología animal - Fisiología vegetal - Fisioterapia - Fitoterapia - Historia - Marketing - Microbiología - Galénica - Geriatría - Paris - Patología - Psicología - Química - Relaciones Laborales - Salud Pública - Técnicas instrumentales - Traumatología  
Elergonomista.com, recursos sobre Biología en internet