Líder mundial en español - Elergonomista.com - Aņo 8
Publicidad en Elergonomista.com
Botánica
Cormofitos
Parénquima, colénquima, esclerénquima
Xilema
Floema
Epidermis
Tejidos Glandulares
La raiz
El tallo
La hoja
La flor
  

Biología para bachiller y selectividad

BIOLOGÍA PARA LA SELECTIVIDAD Y BACHILLERATO

 

 

 

General
Páginas más visitadas
Elergonomista
Objetivos
Contenido
Historia de la biología
El origen de la vida
Diversidad de los seres vivos
Mecanismos de la evolución
Conducta
Ecología
Genética
Histología animal
Tejido hemático  
Citoplasma
Genética molecular
Métodos de estudio de las células y los tejidos. Entrar

Cadena respiratoria. Entrar

Mitocondrias. Entrar
ATP. Entrar
Plastos. Entrar
Analisis del agua. Entrar
Herencia ligada al sexo. Entrar
Mutaciones. Entrar
Determinación del sexo. Entrar
Mecanismos Genéticos básicos de la célula
Transporte de proteínas

Estás en: Inicio > Biofisica > Consecuencias del flujo osmótico

Lo que ocurre, en cada uno de los compartimientos, cuando se establece un flujo osmótico, dependerá, en gran medida, de los VOLUMENES que tengan cada uno de los compartimientos. Se puede dar el caso de dos compartimientos de volúmenes similares, por el contrario, que uno de los compartimientos tenga un volumen que sea infinitamente más grande que el otro. En este último caso, sería como la célula en el mar o la situación de un glóbulo rojo en el plasma.
a) Los compartimientos tienen volúmenes similares. Cuando se establece un flujo osmótico entre dos compartimientos de volúmenes similares, el agua que pasa de uno a otro determinará que el volumen de uno de los compartimientos aumente y su concentración de solutos disminuya, mientras, en el otro compartimiento, el volumen disminuye y la concentración aumenta (Fig. 2.26). La evolución en el tiempo del volumen del compartimiento 1, el que recibe el agua, está mostrada en la Fia. 2.27. Si se espera un tiempo suficiente, se llegará a una condición en la que se han igualado, entre ambos lados, la osmolaridad y, como consecuencia, la concentración de agua y la presión osmótica.

1 1

Aceptando que se movió sólo agua, se puede calcular, como se hizo con difusión, la CONCENTRACION DE EQUILIBRIO. La concentración final sería la misma que se alcanzaría si se quitara la membrana y se mezclaran las soluciones. En ese caso, la solución 1, ANTES de que el agua comience a moverse de 2 hacia 1, tiene un volumen de 1 litro y una osmolaridad C1 de 285 mOsm/L y la solución 2, un volumen de de 1 litro y una osmolaridad C2 de 144 mOsm/L, tendremos:
1

Esta caída de la osmolaridad del compartimiento 1 , desde 285 mOsm/L a 215 mosm/L se debió a la llegada de un volumen de agua desde el compartimiento 2. Puede preguntarse: ¿cuál es el volumen de
agua que ha entrado? Para calcular eso tomemos, por ejemplo, solamente el compartmiento 1. La MASA INICIAL ( mi ) de soluto, que había en ese compartimiento antes del flujo osmótico será IGUAL a la MASA FINAL (mf) que habrá en ese compartimiento 1, luego que haya ocurrido el flujo osmótico y se hayan equilibrado las concentraciones, suponiendo que membrana sólo dejó pasar agua.
De ese modo, para el compartimiento 1:
1
Como el volumen inicial en el compartimiento 1 era de 1 litro, quiere decir que ha entrado, hasta llegar al equilibrio, 0,238 litros desde el compartimiento 2. Se puede hacer, si se quiere, la siguiente comprobación: si la masa en el compartimiento 2 ha permanecido constante. dividiendo la masa en 2 por el volumen final en 2, nos debe dar la concentración final en 2.
Entonces:
1
Esto reafirma lo ya enunciado: en el equilibrio, las concentraciones de los dos compartimientos son iguales.
b) El volumen de uno de los compartimientos es infinito con respecto al otro. Veamos ahora la situación que se presenta en un sistema, como el del plasma humano, con 295 mOsm/kg, donde hay suspendidos glóbulos rojos. Estas son células que, dado que hace un cierto tiempo que están en ese plasma, tienen una osmolalidad intracelular de, también, 295 mOsm/kg. Tomemos ahora una pequeña cantidad de estos glóbulos y coloquémosla en el plasma de OTRA persona. Si este otro plasma tiene, por ejemplo, una osmolalidad de 340 mOsm/kg, el volumen de cada uno de los glóbulos disminuirá, ya que la concentración de agua es mayor dentro del glóbulo que afuera. Se establecerá un flujo osmótico. Como el volumen de los glóbulos que hemos colocado es muy pequeño, comparado con el volumen de plasma, la salida de agua de los glóbulos hará que la osmolalidad interna aumente, pero no podremos notar ningún cambio de concentración en el plasma (Fig. 2.28).

1

En este caso, la concentración que, en equilibrio, se alcance en el interior del glóbulo será igual a la concentración del plasma: 340 mOsm/kg. Si, nuevamente, razonamos que, en el tiempo que duró la experiencia, no hubo movimiento de solutos entre los glóbulos y el plasm, y que lo único que se movió fue agua, podríamos intentar calcular el volumen de UN glóbulo rojo a partir de:
1
Si el volumen inicial Vi es de 90 micometros cúbicos (90 µm3), cuando el glóbulo estaba en el plasma de 290 mOsm/kg, el volumen final será de:
1
En el caso inverso, cuando un glóbulo que estaba en un plasma de 290 mOsm/kg es colocado en un plasma de osmolalidad MENOR, el glóbulo se hincha, aumenta su volumen por entrada de agua. El cálculo del volumen final se puede hacer de la misma manera que para el encogimiento. La variación del volumen del eritrocito en el tiempo, calculada a partir de esta ecuación simple, se puede ver en la Fig. 2.29. Este razonamiento supone, que la solución que hay dentro del eritrocito es una solución diluida y que los solutos practicamente no ocupan lugar. Esto no es estrictamente cierto y habría, para ser exactos, que corregir la
fórmula, introduciendo lo que se conoce como VOLUMEN OSMOTICAMENTE INACTIVO.

1

EL VOLUMEN OSMOTICAMENTE ACTIVO Y EL VOLUMEN OSMOTICAMENTE INACTIVO. El glóbulo rojo NO es una simple bolsa llena de una solución diluida: tiene solutos, como la hemoglobina, qua NO participarán en este
proceso de aumento o disminución del volumen. Pensemos, hipotéticamente en un glóbulo rojo sometido a soluciones cada vez más hiperosmóticas. Si el volumen de sólidos en su interior fuera cero, llegaría un momento, de acuerdo a C1 . V1 = C2 - V2, en que V2, el volumen final, sería cero: el glóbulo rojo desaparecería. Como esto no es cierto, la ecuación a usar es: (V1 - b) . C1 = (V2 - b) - C2 donde b es el volumen a que quedaría reducida la célula cuando es sometida a la acción de una solución infinitamente
hiperosmótica y se llama VOLUMEN OSMOTICAMENTE INACTIVO. El término (V - b) recibe, a su vez, el nombre de VOLUMEN OSMOTICAMENTE ACTIVO, el que realmente participa en los cambios de volumen. ¿Cuánto vale b? Depende de las células, pero se Io estima, para un glóbulo rojo, en alrededor de un 20% del volumen total. El volumen final de un glóbulo rojo sumergido en una solución de 340 mOsm/kg será,
entonces, de:
V1 = 90 mm3 b = 90 . 0,2 = 18 mm3;
V - b = 72 mm3 y
(V2 - b) = 290 mOsm/kg. 72 mm3 / 340 mOsm/L
61,4 mm3 , de donde
V2 = 61,4 + 18 = 79,4 mm3
El volumen final del eritrocito, teniendo en cuenta el volumen osmóticamente inactivo, será de 79,4 micrometros cúbicos, en vez de 76,7 que es Io que calculamos antes.

Contenido
» Nucleo

» Acidos nucleicos

» Prácticas biologia

» Reproducción

» Reproducción sexual

» Desarrollo embrionario
» Mutaciones

» Especialización celular

» Hormonas

» Material de laboratorio

» Problemas. Ejercicios de biología

» Problemas de genética

» Agua y sales minerales

» Niveles de organización de los seres vivos

 

 
2009 Comunidades de divulgación científico técnica. Elergonomista.com - Administración de empresas - Alimentación - Biofísica - Biología - Botánica - Biology - Cardiología - Denominación de origen - Ecología - Derecho romano - Enfermería - Farmacología - Fisiología animal - Fisiología vegetal - Fisioterapia - Fitoterapia - Historia - Marketing - Microbiología - Galénica - Geriatría - Paris - Patología - Psicología - Química - Relaciones Laborales - Salud Pública - Técnicas instrumentales - Traumatología  
Elergonomista.com, recursos sobre Biología en internet