Líder mundial en español - Elergonomista.com - Aņo 8
Publicidad en Elergonomista.com
Botánica
Cormofitos
Parénquima, colénquima, esclerénquima
Xilema
Floema
Epidermis
Tejidos Glandulares
La raiz
El tallo
La hoja
La flor
  

Biología para bachiller y selectividad

BIOLOGÍA PARA LA SELECTIVIDAD Y BACHILLERATO

 

 

 

General
Páginas más visitadas
Elergonomista
Objetivos
Contenido
Historia de la biología
El origen de la vida
Diversidad de los seres vivos
Mecanismos de la evolución
Conducta
Ecología
Genética
Histología animal
Tejido hemático  
Citoplasma
Genética molecular
Métodos de estudio de las células y los tejidos. Entrar

Cadena respiratoria. Entrar

Mitocondrias. Entrar
ATP. Entrar
Plastos. Entrar
Analisis del agua. Entrar
Herencia ligada al sexo. Entrar
Mutaciones. Entrar
Determinación del sexo. Entrar
Mecanismos Genéticos básicos de la célula
Transporte de proteínas
Calidad de vida

Estás en: Inicio > Biofisica > Transporte activo

La desigualdad entre el potencial de equilibrio, calculado por la ecuación de Nernst y el potencial de membrana, medido directamente en la célula, es, sin duda un buen criterio para sospechar que se está en presencia de un TRANSPORTE ACTIVO. Sin embargo, éste no puede ser el UNICO criterio, ya que esta técnica de "diagnóstico" no se puede aplicar, por ejemplo, al caso de los FLUJOS ACOPLADOS.
Supongamos que, sin que haya una diferencia de osmolaridad en las soluciones, hay un flujo de agua entre dos compartimientos y que este flujo se detiene si se INHIBE la bomba de Na+. No hay posibilidades de aplicar la ecuación de Nernst al agua, de modo que el camino a seguir deber ser un poco más largo. Primero hay que demostrar que, en ese sistema en el que se mueve agua, hay un transporte de Na+. Luego demostrar que el flujo de agua está ligado al transporte activo de Na+.
Por fin, decir que en ese caso, el transporte de agua necesita de una fuente de energía celular, a través del transporte de Na+. ¿Hay en ese caso, un transporte activo de agua? No, lo que se mueve es Na+ e, indirectamente, agua: los flujos están acoplados. ¿Cuál es, entonces, una definición de transporte activo? Lo más simple sería decir:
TRANSPORTE ACTIVO ES TODO PROCESO OUE PUEDA DETERMINAR EL FLUJO NETO DE UNA SUSTANCIA EN CONTRA DE SU GRADIENTE ELECTROQUIMICO.

Algo más completa sería la definición que dice (Curran y Schultz, 1976): Si se encuentra que un determinado flujo PUEDE ser debido a un transporte activo, el próximo paso debe ser determinar si ese flujo neto está asociado al metabolismo celular
- Pruebas para determinar si hay acoplamiento entre un flujo de solutos o de solvente y el metabolismo celular. Para saber si hay asociación o acoplamiento entre un cierto flujo y el metabolismo celular, se pueden realizar varios procedimientos. El más sencillo sería ENFRlAR un conjunto de células, de modo de bajar su tasa metabólica. ¿Qué deberá ocurrir con la concentración intracelular de Na+, por ejemplo? Si, como vimos, DEBE HABER una bomba que permanentemente saque Na+ del interior celular, al enfriar las células, la concentración intracelular de Na+ debe AUMENTAR. Por el contrario, en el caso del K+, como se necesita que la bomba funcione metiendo K+ en la célula, al bajar la temperatura la concentración intracelular de K+ debe DISMINUIR. Otra consecuencia del enfriamiento de las células será una disminución de la diferencia de potencial eléctrico y un aumento del volumen celular. Lo primero se debe a que, al diminuir los gradientes de concentración, tienden a desaparecer los POTENCIALES DE DIFUSION. La célula se hincha porque el Na+ ya no estará actuando como catión extracelular para balancear el efecto de las proteínas intracelulares. Si se mantienen glóbulos rojos, por ejemplo, toda la noche a 5 ºC se verá, a la mañana siguiente, que los glóbulos han GANADO Na+ y han perdido K+. Si ahora, se los recalienta a 38 ºC, poco tiempo después los glóbulos vuelven a tener sus concentraciones intracelulares normales.
También, para demostrar el acoplamiento entre un flujo neto y el metabolismo celular, se pueden medir los flujos de Na+ , por ejemplo de adentro hacia afuera y de afuera hacia adentro, utilizando isótopos radiactivos.
MEDICION DE LAS CONCENTRACIONES INTRA Y EXTRACELULARES DE IONES. Para realizar la comparación entre los potenciales de equilibrio para cada ion (Veq) y el potencial de membrana (Vm), hay que realizar una serie de procedimientos, algo complicados, sobre todo si se lo quiere hacer en el animal intacto. El primer problema es medir la concentración, por ejemplo de K+, en el medio que baña la célula (Ko), y en el interior celular (Ki). La medida extracelular es bastante sencilla, ya qua el K+ es un catión que se distribuye casi por igual entre el plasma y el intersticial. Una medida, con un instrumento adecuado, corno el FOTOMETRO DE LLAMA, nos da la concentración plasmática de K+. Conociendo la cantidad de solutos del plasma, se puede conocer la concentración de K+ en el agua plasmática. Por último, conociendo el factor o relación de Donnan, se puede conocer la concentración de K+ en el agua intersticial (Ko). La concentración
intracelular de K+, o de cualquier otro ion, as algo más complicado de obtener, ya que es imposible conseguir, por biopsia, por ejemplo, una masa intracelular qua esté totalmente libre de líquido extracelular. En ese caso, lo que se hace es determinar, antes que nada, el volumen de extracelular qua hay en asa muestra, usando la técnica de dilución de indicadores como la inulina o el manitol. Luego, conociendo, por el procedimiento anterior, la concentración extracelular, se sabe qué masa de K+ por ejemplo, hay en el extracelular de esa muestra.
Luego, entonces, homogeneizando todo el tejido (EC + IC) se sabe la mesa total del ion. A ésta se le resta la masa EC y se obtiene la concentraron IC. Con esta concentración se puede, ahora, calcular, a través de la ecuación de Nernst, el potencial de equilibrio del ion. Como esta determinación IN VIVO es algo engorrosa, es más práctico colocar las células AISLADAS en un medio (Ringer) donde la concentración EC se conoce y se lo puede variar a voluntad.
HAY TRANSPORTE ACTIVO CUANDO UN FLUJO NETO NO PUEDE SER EXPLICADO POR UNA PROPIA FUERZA IMPULSORA MEDIDA EN LAS SOLUCIONES.

El 22Na y el 24Na son dos isótopos del sodio que tiene características, como la vida media y la energía de las radiaciones, que los hace diferenciables. Siguiendo su emisión radiactiva se puede saber, en el caso de los glóbulos, cuál de los dos flujos está más afectado por el frío. A 5 ºC, la ENTRADA de Na+, que es PASIVA, por gradiente de concentración (DIFUSION SIMPLE) estará, lógicamente, disminuida porque, a baja temperatura, hay menor agitación de las partículas. Sin embargo, la SALIDA de Na+, que es ACTIVA, lo estará mucho más. Si ambos flujos es debieran a fenómenos pasivos o activos, el COCIENTE entre los flujos unidireccionales debería mantenerse constate. Si llamamos:
Jio al flujo de adentro (i) hacia afuera (o)
Joi al flujo de afuera hacia adentro
y medimos los cocientes a distintas temperaturas y encontramos:
1
NO debe pensarse en la existencia de bombas asociadas a procesos metabólicos. Por el contrario, si los cocientes son diferentes, UNO de los flujos está ligado el metabolismo. En el caso del Na+, hay una disminución del Jio a 5 ºC, y el cociente es Jio / Joi es menor que a 38 ºC.
Muy frecuentemente se utilizan, del mismo modo que el FRIO, ciertas drogas que inhiben alguno de los pasos del sistema de transporte activo. Las más habituales son el CIANURO, el DlNlTROFENOL, IODOACETATO y la OUABAINA, permitiendo, muchas veces, una "disección" farmacológica de estos sistemas .
POTENCIAL DE MEMBRANA Y ELECTRONEUTRALIDAD. No debe caerse en el error de considerar que el potencial de difusión se debe a que las dos soluciones tienen, como tales, "diferentes cargas". Las soluciones 1 y 2, en nuestros ejemplos, siguen siendo eléctricamente neutras, ya que al medir la concentración de aniones y cationes se ve que persiste la igualdad entre ambos. Es sólo a nivel de membrana qua se ha producido la separación de cargas, como si el lado derecho a izquierdo de la membrana fueran las dos caras de un CONDENSADOR plano. Como en estos, existe una sustancia DIELECTRICA, formada principalmente por los lípidos de la membrana, que evita qua las cargos negativas y
positivas se unan. La capacidad de la membrana celular es de, aproximadamente 1 microfaradio (1 mF) por
centímetro cuadrado. Si se recuerda que:
Capacidad = carga / voltaje
la cantidad de cargas qua hay qua poner un capacitor para obtener un potencial parecido el de una membrana celular es:
Carga = 10 - 6 F/ cm2 . 90 . 10- 3 V y, como F = Coulomb/ volt Carga = 9 . 10-8 coulomb/ cm2
Como lo qua hay, a ambos lados de la membrana, son iones, la carga, en coulomb, puede ser transformada en moles de iones y de ese modo saber el número de cationes y aniones que están separados por la membrana.
96500 coulomb ...... 1 mol
9.10 - 8 coulomb ...... x = 9,3 . 10 - 13 mol.
Esto quiere decir que bastará qua esa cantidad de iones se coloquen a los lados de 1 cm2 de una membrana de 1 mF para que existan 90 mV de diferencia de potencial. Así, para el caso del K+, esta cantidad de cargas en cada solución determinará un cambio INDETECTABLE .

Contenido
» Nucleo

» Acidos nucleicos

» Prácticas biologia

» Reproducción

» Reproducción sexual

» Desarrollo embrionario
» Mutaciones

» Especialización celular

» Hormonas

» Material de laboratorio

» Problemas. Ejercicios de biología

» Problemas de genética

» Agua y sales minerales

» Niveles de organización de los seres vivos

 

 
2009 Comunidades de divulgación científico técnica. Elergonomista.com - Administración de empresas - Alimentación - Biofísica - Biología - Botánica - Biology - Cardiología - Denominación de origen - Ecología - Derecho romano - Enfermería - Farmacología - Fisiología animal - Fisiología vegetal - Fisioterapia - Fitoterapia - Historia - Marketing - Microbiología - Galénica - Geriatría - Paris - Patología - Psicología - Química - Relaciones Laborales - Salud Pública - Técnicas instrumentales - Traumatología  
Elergonomista.com, recursos sobre Biología en internet